\qquad
\qquad
Lesson 1.8 day 1 - Angles form by Parallel Lines and a Transversal

Transversal:

\qquad

When two parallel lines are cut by a transversal, there are always ONLY \qquad different angle measures formed. They are an \qquad angle and an \qquad angle.

The lines must be \qquad for any of properties in the chart above to exist. The two angle measures only exist along the same \qquad .

Practice:

The measure of angle 4 is 100°. Find the measure of the following angles:

1. $\angle 1$
2. $\angle 2$
3. $\angle 3$
4. $\angle 5$
5. $\angle 6$
6. $\angle 7$
$7 . \angle 8$
7. Using the diagram above, fill in the blanks.
a. $\angle 1$ and $\angle 2$ are \qquad angles.
b. $\angle 6$ and $\angle 7$ are \qquad angles.
c. $\angle 1$ and $\angle 5$ are \qquad angles.
d. $\angle 3$ and $\angle 6$ are \qquad angles.
e. $\angle 1$ and $\angle 8$ are \qquad angles.
8. In the figures below, lines l and m are parallel and cut by transversal k. Find the value for x and the measure of each of the other angles.

9.

5.

5. Two parallel roads, Elm Street and Oak Street, are crossed by a third, Walnut Street, as shown in the accompanying diagram. Find the number of degrees in the acute angle formed by the intersection of Walnut Street and Elm Street. Explain how you arrived at your answer.

Name: \qquad
Lesson 1.8 day 2 - Angles form by Parallel Lines and a Transversal

Date:
CC Geometry

An \qquad is sometimes useful when solving for unknown angles.

In this figure, we can use the auxiliary line to find the measures of $\angle e$ and $\angle f$ (how?), then add the two measures together to find the measure of $\angle W$.

What is the measure of $\angle W$?

1.

$$
d=
$$

\qquad
2.

$$
\mathrm{g}=
$$

\qquad
4.

5.

$$
\mathrm{m} \angle \mathrm{i}=
$$

